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Problem 1. We say that f : X — C is bounded if there is a constant M > 0 with
|f(z)] < M for all z in X. Show that if f and g are bounded uniformly continuous (Lipschitz)
functions from X into C then so is fg.

Proof. Let d denote the metric on X. Since f and g are bounded, there exists M > 0 such
that |f(z)| < M and |g(z)| < M for all x in X. So, |(fg)(z)] < M? for all z in X and hence
fg is bounded. Now, let € > 0. By the uniform continuity of f and g, there exists § > 0 such
that | f(z) — f(y)| < €/2M and |g(x) — g(y)| < €/2M for all z,y in X such that d(z,y) < 6.
Then, for any z,y in X such that d(z,y) < 9, we have

|f(x)g(z) — fy)gy)| = [f(x)g(x) — f(x)g(y) + f(x)g(y) — f(¥)g(y)|

€ €
< — — <M -—4+M-—=
< f@)llgz) =9+ lgWlf () = fY)] < M.or + Mo = e

This proves the uniform continuity of fg.

Now, let f and g be bounded (with bound M) Lipschitz functions with constant M’. Then

|f(z) — f(y)| < M'd(z,y) and |g(z) — g(y)| < M'd(z,y) for all z,y € X. Then, as above,

[f(@)g(x) = fW)g()] < f(@)llg(x) = gl + gl f (x) — f(y)]
< MM'd(z,y) + MM'd(x,y) = 2MM'd(x,y)

So, fg is Lipschitz with constant 2M M.
]

Problem 2. Suppose f : X —  is uniformly continuous; show that if {x,} is a Cauchy
sequence in X then {f(z,)} is a Cauchy sequence in Q. Is this still true if we only assume
that f is continuous?

Proof. Let d denote the metric on X and let p denote the metric on 2. Let € > 0. Then,
by the uniform continuity of f, there exists 6 > 0 such that p(f(z), f(y)) < € whenever
d(x,y) < 6. By the Cauchy-ness of {z,}, there exists N € N such that d(x,,z,,) < J for all
n,m > N. This implies that p(f(x,), f(z,)) < € for all n,m > N. As € > 0 was arbitrary,
we conclude that {f(z,)} is Cauchy in .

This is not true if f is just assumed to be continuous. For example, take f : (0,1) — (1, 00)
given by f(z) = 1/x. Then the sequence {1/n} is Cauchy in (0,1) but {f(1/n)} is not
Cauchy in (1, 00). O



Problem 3. Suppose that €2 is a complete metric space and that f : (D,d) — (£2;p) is
uniformly continuous, where D is dense in (X,d). Use Problem 2 to show that there is a
uniformly continuous function g : X — Q with g(z) = f(z) for every z in D.

Proof. Let x in X. We can then choose a sequence {z,} in D that converges to z in X.
Since {z,} is a Cauchy sequence (because it is convergent), by Problem 2, we know that
{f(x,)} is a Cauchy sequence in Q. Since 2 is complete, it converges in 2 to a limit, which
we shall denote by g(x). Now, let {y,} be another sequence in D converging to x in X. Then
it is easy to see that the sequence x1,y1, T2, ¥o, ... is a Cauchy sequence in D converging to
x in X. So, the sequence f(z1), f(y1), f(x2), f(y2), ... in © is Cauchy and has a convergent
subsequence {f(x,)} converging to g(x). This implies that the subsequence {f(y,)} also
converges to g(x). So, g(z) is an element of Q that is dependent only on = and not on the
choice of sequence in D. So the function g : X — € is well-defined. Clearly, if x € D,
choosing the sequence {z,, = x} in D implies that g(x) = f(z). Now, let € > 0. Since f is
uniformly continuous, there exists 6 > 0 such that p(f(z), f(y)) < € whenever x,y in D with
d(xz,y) <. Let z,y in X be such that d(x,y) = § — r with 0 < r < 4. Choose 2 sequences
{z,,} and {y,} in D converging to = and y respectively. Choose N large enough such that

d(zn, ) <r/2,d(yn,y) <7r/2,p(f(xNn), 9(x)) < eand p(f(yn),g(y)) < e Then
d(zn,yn) < d(zn,z) +d(z,y) + d(y,yn) <1/2+0 —1r+1/2=0.

This implies that p(f(xn,yn)) < €/3. So,

p(9(x),9(y)) < plg(x), f(zn)) + p(f(zn), f(yn)) + p(f(yn), 9(y)) <e€/3+¢€/3+¢€/3=¢

This shows that ¢ is uniformly continuous. O

Problem 4. Let {f,} be a sequence of uniformly continuous functions from (X,d) into
(Q,p) and suppose that f = w-lim f,, exists. Prove that f is uniformly continuous. If each
fn is a Lipschitz function with constant M, and sup M,, < oo, show that f is a Lipschitz
function. If sup M,, = oo, show that f may fail to be Lipschitz.

Proof. Let € > 0. Fix N large enough such that p(fn(x), f(z)) < ¢/3 for all  in X. Since
fn is uniformly continuous, there exists 6 > 0 such that p(fny(z), fv(y)) < €/3 for all z,y in
X with d(z,y) < d. Then, for all z,y in X with d(z,y) <, we have

p(f (@), f(y) < p(f(2), fn(x)) +p(fn(x), fn () + (I (y), f(Y) < €e/3+€/3+¢€/3=¢

So f is uniformly continuous.

Now suppose the f,,’s are Lipschitz functions with constant M,,. So p(fn(x), fn(y)) < M,d(z,y)
for all z,y in X. Let M = sup M,,. Pick N large enough such that p(f(z), fx (x)) < €/2 for
all  in X. Then, we have

p(f(x), f(y) < p(f(x), fn(x) +p(fn(2), fn () +p(fn(y), f(y)
< €/2+4+ Myd(z,y) +€/2 < e+ Md(x,y)



So we have that p(f(x), f(y)) — Md(z,y) < € for all z,y in X. As € > 0 was arbitrary, we
have p(f(x), f(y)) < Md(x,y). Thus, f is a Lipschitz function.

Now, we use the fact that every 2m-periodic continuous function on [—m, 7| can be ap-
proximated uniformly by trigonometric polynomials, i.e. if f:[—m, 7] — C is a continuous
function with f(—m) = f(m), then there exists a sequence {f,} of trigonometric polynomials
that converge uniformly to f. If we prove that every trigonometric polynomial is Lipschitz,

then taking any continuous 27-periodic function f : [—7, 7] — C that is not Lipschitz gives
us a counterexample. For k € Z, let g, : [—m, 7] — C be given by gi(x) = €**. Then, for
T #Y,

k() — gr(y)| _ |€M - eiky| _ 2| Sing(x —y)|

|z —y| |z —y| |z —y|
So gi is Lipschitz with constant k. Since a finite linear combination of Lipschitz func-
tions is Lipschitz, any trigonometric polynomial is Lipschitz. As an example, we take

f(z) = |z|In(|z|). If f is Lipschitz, there exists M > 0 such that w < M for all

x € [—m, 7|,z #0. But ‘f(‘x 0|( Il = |1n ||| which is unbounded near 0. So f is not Lipschitz.

Note that by observing that polynomials on a bounded interval are Lipschitz, we could also
apply Weierstrass approximation theorem to obtain counterexamples.
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Problem 5. Show that the radius of convergence of the power series
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§ n (n+1)

n=1

is 1, and discuss convergence for z =1, —1, and 1.

Proof. For this power series, a,, = % if n =m(m + 1) for some m € N and 0 otherwise.
-1)" 1 1
lim sup |a,|"/™ = lim sup \uﬁ/"("ﬂ) = limsup —— = lim —
n n nn+1) 7y n(n+1)
B 1 B 1 1 !
lim 7D Jm i €0 ‘

So 1/R =1, hence R = 1.
Since n(n + 1) is even for all n > 1, for z = 1, —1, the series equals >~ % = In2. Let
z = 1. Then the series becomes

()" ey o (1) (D™ 1 111
) n(n — _ln(n+1)/2: A T - .
; n ! ; n (=1) ; n 2 3 * 4 * )
B i (_1)n+1
“— 2n(2n — 1)
By the alternating series test, this converges. O]



