Solutions: Homework 3

Nandagopal Ramachandran

October 21, 2019

Problem 1. We say that $f: X \rightarrow \mathbb{C}$ is bounded if there is a constant $M>0$ with $|f(x)| \leq M$ for all x in X. Show that if f and g are bounded uniformly continuous (Lipschitz) functions from X into \mathbb{C} then so is $f g$.

Proof. Let d denote the metric on X. Since f and g are bounded, there exists $M>0$ such that $|f(x)| \leq M$ and $|g(x)| \leq M$ for all x in X. So, $|(f g)(x)| \leq M^{2}$ for all x in X and hence $f g$ is bounded. Now, let $\epsilon>0$. By the uniform continuity of f and g, there exists $\delta>0$ such that $|f(x)-f(y)|<\epsilon / 2 M$ and $|g(x)-g(y)|<\epsilon / 2 M$ for all x, y in X such that $d(x, y)<\delta$. Then, for any x, y in X such that $d(x, y)<\delta$, we have

$$
\begin{aligned}
& |f(x) g(x)-f(y) g(y)|=|f(x) g(x)-f(x) g(y)+f(x) g(y)-f(y) g(y)| \\
& \quad \leq|f(x)||g(x)-g(y)|+|g(y)||f(x)-f(y)| \leq M \cdot \frac{\epsilon}{2 M}+M \cdot \frac{\epsilon}{2 M}=\epsilon
\end{aligned}
$$

This proves the uniform continuity of $f g$.
Now, let f and g be bounded (with bound M) Lipschitz functions with constant M^{\prime}. Then $|f(x)-f(y)| \leq M^{\prime} d(x, y)$ and $|g(x)-g(y)| \leq M^{\prime} d(x, y)$ for all $x, y \in X$. Then, as above,

$$
\begin{aligned}
\mid f(x) g(x) & -f(y) g(y)|\leq|f(x)|| g(x)-g(y)|+|g(y)|| f(x)-f(y) \mid \\
& \leq M M^{\prime} d(x, y)+M M^{\prime} d(x, y)=2 M M^{\prime} d(x, y)
\end{aligned}
$$

So, $f g$ is Lipschitz with constant $2 M M^{\prime}$.

Problem 2. Suppose $f: X \rightarrow \Omega$ is uniformly continuous; show that if $\left\{x_{n}\right\}$ is a Cauchy sequence in X then $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence in Ω. Is this still true if we only assume that f is continuous?

Proof. Let d denote the metric on X and let ρ denote the metric on Ω. Let $\epsilon>0$. Then, by the uniform continuity of f, there exists $\delta>0$ such that $\rho(f(x), f(y))<\epsilon$ whenever $d(x, y)<\delta$. By the Cauchy-ness of $\left\{x_{n}\right\}$, there exists $N \in \mathbb{N}$ such that $d\left(x_{n}, x_{m}\right)<\delta$ for all $n, m \geq N$. This implies that $\rho\left(f\left(x_{n}\right), f\left(x_{m}\right)\right)<\epsilon$ for all $n, m \geq N$. As $\epsilon>0$ was arbitrary, we conclude that $\left\{f\left(x_{n}\right)\right\}$ is Cauchy in Ω.
This is not true if f is just assumed to be continuous. For example, take $f:(0,1) \rightarrow(1, \infty)$ given by $f(x)=1 / x$. Then the sequence $\{1 / n\}$ is Cauchy in $(0,1)$ but $\{f(1 / n)\}$ is not Cauchy in $(1, \infty)$.

Problem 3. Suppose that Ω is a complete metric space and that $f:(D, d) \rightarrow(\Omega ; \rho)$ is uniformly continuous, where D is dense in (X, d). Use Problem 2 to show that there is a uniformly continuous function $g: X \rightarrow \Omega$ with $g(x)=f(x)$ for every x in D.

Proof. Let x in X. We can then choose a sequence $\left\{x_{n}\right\}$ in D that converges to x in X. Since $\left\{x_{n}\right\}$ is a Cauchy sequence (because it is convergent), by Problem 2, we know that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence in Ω. Since Ω is complete, it converges in Ω to a limit, which we shall denote by $g(x)$. Now, let $\left\{y_{n}\right\}$ be another sequence in D converging to x in X. Then it is easy to see that the sequence $x_{1}, y_{1}, x_{2}, y_{2}, \ldots$ is a Cauchy sequence in D converging to x in X. So, the sequence $f\left(x_{1}\right), f\left(y_{1}\right), f\left(x_{2}\right), f\left(y_{2}\right), \ldots$ in Ω is Cauchy and has a convergent subsequence $\left\{f\left(x_{n}\right)\right\}$ converging to $g(x)$. This implies that the subsequence $\left\{f\left(y_{n}\right)\right\}$ also converges to $g(x)$. So, $g(x)$ is an element of Ω that is dependent only on x and not on the choice of sequence in D. So the function $g: X \rightarrow \Omega$ is well-defined. Clearly, if $x \in D$, choosing the sequence $\left\{x_{n}=x\right\}$ in D implies that $g(x)=f(x)$. Now, let $\epsilon>0$. Since f is uniformly continuous, there exists $\delta>0$ such that $\rho(f(x), f(y))<\epsilon$ whenever x, y in D with $d(x, y)<\delta$. Let x, y in X be such that $d(x, y)=\delta-r$ with $0<r \leq \delta$. Choose 2 sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in D converging to x and y respectively. Choose N large enough such that $d\left(x_{N}, x\right)<r / 2, d\left(y_{N}, y\right)<r / 2, \rho\left(f\left(x_{N}\right), g(x)\right)<\epsilon$ and $\rho\left(f\left(y_{N}\right), g(y)\right)<\epsilon$. Then

$$
d\left(x_{N}, y_{N}\right) \leq d\left(x_{N}, x\right)+d(x, y)+d\left(y, y_{N}\right)<r / 2+\delta-r+r / 2=\delta
$$

This implies that $\rho\left(f\left(x_{N}, y_{N}\right)\right)<\epsilon / 3$. So,

$$
\rho(g(x), g(y)) \leq \rho\left(g(x), f\left(x_{N}\right)\right)+\rho\left(f\left(x_{N}\right), f\left(y_{N}\right)\right)+\rho\left(f\left(y_{N}\right), g(y)\right)<\epsilon / 3+\epsilon / 3+\epsilon / 3=\epsilon .
$$

This shows that g is uniformly continuous.
Problem 4. Let $\left\{f_{n}\right\}$ be a sequence of uniformly continuous functions from (X, d) into (Ω, p) and suppose that $f=u-\lim f_{n}$ exists. Prove that f is uniformly continuous. If each f_{n} is a Lipschitz function with constant M_{n} and $\sup M_{n}<\infty$, show that f is a Lipschitz function. If $\sup M_{n}=\infty$, show that f may fail to be Lipschitz.

Proof. Let $\epsilon>0$. Fix N large enough such that $p\left(f_{N}(x), f(x)\right)<\epsilon / 3$ for all x in X. Since f_{N} is uniformly continuous, there exists $\delta>0$ such that $p\left(f_{N}(x), f_{N}(y)\right)<\epsilon / 3$ for all x, y in X with $d(x, y)<\delta$. Then, for all x, y in X with $d(x, y)<\delta$, we have

$$
p(f(x), f(y)) \leq p\left(f(x), f_{N}(x)\right)+p\left(f_{N}(x), f_{N}(y)\right)+p\left(f_{N}(y), f(y)\right)<\epsilon / 3+\epsilon / 3+\epsilon / 3=\epsilon
$$

So f is uniformly continuous.
Now suppose the f_{n} 's are Lipschitz functions with constant M_{n}. So $p\left(f_{n}(x), f_{n}(y)\right) \leq M_{n} d(x, y)$ for all x, y in X. Let $M=\sup M_{n}$. Pick N large enough such that $p\left(f(x), f_{N}(x)\right)<\epsilon / 2$ for all x in X. Then, we have

$$
\begin{aligned}
p(f(x), f(y)) & \leq p\left(f(x), f_{N}(x)\right)+p\left(f_{N}(x), f_{N}(y)\right)+p\left(f_{N}(y), f(y)\right) \\
& <\epsilon / 2+M_{N} d(x, y)+\epsilon / 2 \leq \epsilon+M d(x, y)
\end{aligned}
$$

So we have that $p(f(x), f(y))-M d(x, y)<\epsilon$ for all x, y in X. As $\epsilon>0$ was arbitrary, we have $p(f(x), f(y)) \leq M d(x, y)$. Thus, f is a Lipschitz function.
Now, we use the fact that every 2π-periodic continuous function on $[-\pi, \pi]$ can be approximated uniformly by trigonometric polynomials, i.e. if $f:[-\pi, \pi] \rightarrow \mathbb{C}$ is a continuous function with $f(-\pi)=f(\pi)$, then there exists a sequence $\left\{f_{n}\right\}$ of trigonometric polynomials that converge uniformly to f. If we prove that every trigonometric polynomial is Lipschitz, then taking any continuous 2π-periodic function $f:[-\pi, \pi] \rightarrow \mathbb{C}$ that is not Lipschitz gives us a counterexample. For $k \in \mathbb{Z}$, let $g_{k}:[-\pi, \pi] \rightarrow \mathbb{C}$ be given by $g_{k}(x)=e^{i k x}$. Then, for $x \neq y$,

$$
\frac{\left|g_{k}(x)-g_{k}(y)\right|}{|x-y|}=\frac{\left|e^{i k x}-e^{i k y}\right|}{|x-y|}=\frac{2\left|\sin \frac{k}{2}(x-y)\right|}{|x-y|} \leq k
$$

So g_{k} is Lipschitz with constant k. Since a finite linear combination of Lipschitz functions is Lipschitz, any trigonometric polynomial is Lipschitz. As an example, we take $f(x)=|x| \ln (|x|)$. If f is Lipschitz, there exists $M>0$ such that $\frac{|f(x)-f(0)|}{|x-0|}<M$ for all $x \in[-\pi, \pi], x \neq 0$. But $\frac{|f(x)-f(0)|}{|x-0|}=|\ln | x| |$ which is unbounded near 0 . So f is not Lipschitz. Note that by observing that polynomials on a bounded interval are Lipschitz, we could also apply Weierstrass approximation theorem to obtain counterexamples.

Problem 5. Show that the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} z^{n(n+1)}
$$

is 1 , and discuss convergence for $z=1,-1$, and i.
Proof. For this power series, $a_{n}=\frac{(-1)^{m}}{m}$ if $n=m(m+1)$ for some $m \in \mathbb{N}$ and 0 otherwise.

$$
\begin{aligned}
\lim \sup \left|a_{n}\right|^{1 / n}= & \lim \sup \left|\frac{(-1)^{n}}{n}\right|^{1 / n(n+1)}=\lim \sup \frac{1}{n^{\frac{1}{n(n+1)}}}=\lim \frac{1}{n^{\frac{1}{n(n+1)}}} \\
& =\frac{1}{\lim n^{\frac{1}{n(n+1)}}}=\frac{1}{e^{\lim \frac{\ln n}{n(n+1)}}}=\frac{1}{e^{0}}=1 .
\end{aligned}
$$

So $1 / R=1$, hence $R=1$.
Since $n(n+1)$ is even for all $n \geq 1$, for $z=1,-1$, the series equals $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=\ln 2$. Let $z=i$. Then the series becomes

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} i^{n(n+1)}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(-1)^{n(n+1) / 2}=\sum_{n=1}^{\infty} \frac{(-1)^{\frac{n(n+3)}{2}}}{n}=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\ldots \\
=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n(2 n-1)}
\end{gathered}
$$

By the alternating series test, this converges.

