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Problem 1. We say that f : X → C is bounded if there is a constant M > 0 with
|f(x)| ≤M for all x in X. Show that if f and g are bounded uniformly continuous (Lipschitz)
functions from X into C then so is fg.

Proof. Let d denote the metric on X. Since f and g are bounded, there exists M > 0 such
that |f(x)| ≤M and |g(x)| ≤M for all x in X. So, |(fg)(x)| ≤M2 for all x in X and hence
fg is bounded. Now, let ε > 0. By the uniform continuity of f and g, there exists δ > 0 such
that |f(x)− f(y)| < ε/2M and |g(x)− g(y)| < ε/2M for all x, y in X such that d(x, y) < δ.
Then, for any x, y in X such that d(x, y) < δ, we have

|f(x)g(x)− f(y)g(y)| = |f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)|

≤ |f(x)||g(x)− g(y)|+ |g(y)||f(x)− f(y)| ≤M.
ε

2M
+M.

ε

2M
= ε

This proves the uniform continuity of fg.
Now, let f and g be bounded (with bound M) Lipschitz functions with constant M ′. Then
|f(x)− f(y)| ≤M ′d(x, y) and |g(x)− g(y)| ≤M ′d(x, y) for all x, y ∈ X. Then, as above,

|f(x)g(x)− f(y)g(y)| ≤ |f(x)||g(x)− g(y)|+ |g(y)||f(x)− f(y)|

≤MM ′d(x, y) +MM ′d(x, y) = 2MM ′d(x, y)

So, fg is Lipschitz with constant 2MM ′.

Problem 2. Suppose f : X → Ω is uniformly continuous; show that if {xn} is a Cauchy
sequence in X then {f(xn)} is a Cauchy sequence in Ω. Is this still true if we only assume
that f is continuous?

Proof. Let d denote the metric on X and let ρ denote the metric on Ω. Let ε > 0. Then,
by the uniform continuity of f, there exists δ > 0 such that ρ(f(x), f(y)) < ε whenever
d(x, y) < δ. By the Cauchy-ness of {xn}, there exists N ∈ N such that d(xn, xm) < δ for all
n,m ≥ N. This implies that ρ(f(xn), f(xm)) < ε for all n,m ≥ N. As ε > 0 was arbitrary,
we conclude that {f(xn)} is Cauchy in Ω.
This is not true if f is just assumed to be continuous. For example, take f : (0, 1)→ (1,∞)
given by f(x) = 1/x. Then the sequence {1/n} is Cauchy in (0, 1) but {f(1/n)} is not
Cauchy in (1,∞).
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Problem 3. Suppose that Ω is a complete metric space and that f : (D, d) → (Ω; ρ) is
uniformly continuous, where D is dense in (X, d). Use Problem 2 to show that there is a
uniformly continuous function g : X → Ω with g(x) = f(x) for every x in D.

Proof. Let x in X. We can then choose a sequence {xn} in D that converges to x in X.
Since {xn} is a Cauchy sequence (because it is convergent), by Problem 2, we know that
{f(xn)} is a Cauchy sequence in Ω. Since Ω is complete, it converges in Ω to a limit, which
we shall denote by g(x). Now, let {yn} be another sequence in D converging to x in X. Then
it is easy to see that the sequence x1, y1, x2, y2, ... is a Cauchy sequence in D converging to
x in X. So, the sequence f(x1), f(y1), f(x2), f(y2), ... in Ω is Cauchy and has a convergent
subsequence {f(xn)} converging to g(x). This implies that the subsequence {f(yn)} also
converges to g(x). So, g(x) is an element of Ω that is dependent only on x and not on the
choice of sequence in D. So the function g : X → Ω is well-defined. Clearly, if x ∈ D,
choosing the sequence {xn = x} in D implies that g(x) = f(x). Now, let ε > 0. Since f is
uniformly continuous, there exists δ > 0 such that ρ(f(x), f(y)) < ε whenever x, y in D with
d(x, y) < δ. Let x, y in X be such that d(x, y) = δ − r with 0 < r ≤ δ. Choose 2 sequences
{xn} and {yn} in D converging to x and y respectively. Choose N large enough such that
d(xN , x) < r/2, d(yN , y) < r/2, ρ(f(xN), g(x)) < ε and ρ(f(yN), g(y)) < ε. Then

d(xN , yN) ≤ d(xN , x) + d(x, y) + d(y, yN) < r/2 + δ − r + r/2 = δ.

This implies that ρ(f(xN , yN)) < ε/3. So,

ρ(g(x), g(y)) ≤ ρ(g(x), f(xN)) + ρ(f(xN), f(yN)) + ρ(f(yN), g(y)) < ε/3 + ε/3 + ε/3 = ε.

This shows that g is uniformly continuous.

Problem 4. Let {fn} be a sequence of uniformly continuous functions from (X, d) into
(Ω, p) and suppose that f = u-lim fn exists. Prove that f is uniformly continuous. If each
fn is a Lipschitz function with constant Mn and supMn < ∞, show that f is a Lipschitz
function. If supMn =∞, show that f may fail to be Lipschitz.

Proof. Let ε > 0. Fix N large enough such that p(fN(x), f(x)) < ε/3 for all x in X. Since
fN is uniformly continuous, there exists δ > 0 such that p(fN(x), fN(y)) < ε/3 for all x, y in
X with d(x, y) < δ. Then, for all x, y in X with d(x, y) < δ, we have

p(f(x), f(y)) ≤ p(f(x), fN(x)) + p(fN(x), fN(y)) + p(fN(y), f(y)) < ε/3 + ε/3 + ε/3 = ε.

So f is uniformly continuous.
Now suppose the fn’s are Lipschitz functions with constantMn. So p(fn(x), fn(y)) ≤Mnd(x, y)
for all x, y in X. Let M = supMn. Pick N large enough such that p(f(x), fN(x)) < ε/2 for
all x in X. Then, we have

p(f(x), f(y)) ≤ p(f(x), fN(x)) + p(fN(x), fN(y)) + p(fN(y), f(y))

< ε/2 +MNd(x, y) + ε/2 ≤ ε+Md(x, y)
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So we have that p(f(x), f(y)) −Md(x, y) < ε for all x, y in X. As ε > 0 was arbitrary, we
have p(f(x), f(y)) ≤Md(x, y). Thus, f is a Lipschitz function.
Now, we use the fact that every 2π-periodic continuous function on [−π, π] can be ap-
proximated uniformly by trigonometric polynomials, i.e. if f :[−π, π] → C is a continuous
function with f(−π) = f(π), then there exists a sequence {fn} of trigonometric polynomials
that converge uniformly to f. If we prove that every trigonometric polynomial is Lipschitz,
then taking any continuous 2π-periodic function f : [−π, π]→ C that is not Lipschitz gives
us a counterexample. For k ∈ Z, let gk : [−π, π] → C be given by gk(x) = eikx. Then, for
x 6= y,

|gk(x)− gk(y)|
|x− y|

=
|eikx − eiky|
|x− y|

=
2| sin k

2
(x− y)|

|x− y|
≤ k

So gk is Lipschitz with constant k. Since a finite linear combination of Lipschitz func-
tions is Lipschitz, any trigonometric polynomial is Lipschitz. As an example, we take
f(x) = |x| ln(|x|). If f is Lipschitz, there exists M > 0 such that |f(x)−f(0)||x−0| < M for all

x ∈ [−π, π], x 6= 0. But |f(x)−f(0)||x−0| = | ln |x|| which is unbounded near 0. So f is not Lipschitz.
Note that by observing that polynomials on a bounded interval are Lipschitz, we could also
apply Weierstrass approximation theorem to obtain counterexamples.

Problem 5. Show that the radius of convergence of the power series

∞∑
n=1

(−1)n

n
zn(n+1)

is 1, and discuss convergence for z = 1,−1, and i.

Proof. For this power series, an = (−1)m
m

if n = m(m+ 1) for some m ∈ N and 0 otherwise.

lim sup |an|1/n = lim sup |(−1)n

n
|1/n(n+1) = lim sup

1

n
1

n(n+1)

= lim
1

n
1

n(n+1)

=
1

limn
1

n(n+1)

=
1

elim
lnn

n(n+1)

=
1

e0
= 1.

So 1/R = 1, hence R = 1.

Since n(n + 1) is even for all n ≥ 1, for z = 1,−1, the series equals
∑∞

n=1
(−1)n

n
= ln 2. Let

z = i. Then the series becomes

∞∑
n=1

(−1)n

n
in(n+1) =

∞∑
n=1

(−1)n

n
(−1)n(n+1)/2 =

∞∑
n=1

(−1)
n(n+3)

2

n
= 1− 1

2
− 1

3
+

1

4
+

1

5
− ...

=
∞∑
n=1

(−1)n+1

2n(2n− 1)

By the alternating series test, this converges.
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